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Abstract— Various failure mechanisms involving both local and global deformation mechanisms of
layered structures, consisting of differently oriented orthotropic laminae, are investigated with a
large deformation finite element analysis. Under large compressive loads, fiber-reinforced composite
structures can fail by buckling, kink band formation and/or delamination growth. Our aim is to
identify the dominant mode which leads to the structural failure under a given boundary condition
and geometrical shape. It is assumed that these structures contain initial interlaminar flaws rep-
resented by embedded delaminations. Such flaws can play a significant role in defining overall
structural integrity and deformation mechanisms. Our study considers two structures with dis-
tinguished shapes, both consisting of four layer laminae. The first structure is a flat panel under
compressive Joad and the second structure is a cylindrical shell subjected to external pressure. In
both cases, the energy release rate and mixed-mode stress intensity factors are computed to quantify
the crack driving force and used to measure likelihood of delamination growth. In the flat panel
model, two buckling modes, a global and a local, are observed under quasi-static loading conditions.
Depending upon the delamination length and laminate stacking orientations, the interaction of
these two modes can produce an unstable post-buckling behavior. It is found that the energy release
rate exceeds experimentally estimated fracture toughness values only after buckling occurs. In the
cylindrical shell study, lower critical buckling loads are observed for models with longer interlaminar
delamination as in the flat panel model. However, unlike the flat panel case, the energy release rate
surpasses the critical toughness well before the applied pressure reaches the buckling load of the
flawed cylindrical shell. This behavior implies that a shell containing an embedded defect along an
interface can fail by delamination growth and therefore has a failure load lower than its critical
buckling load. Also, for thicker cylindrical shells, the compressive internal stress exceeds the pre-
dicted stress required for kink band formation prior to structural buckling. The competition among
these failure modes, buckling, delamination growth and compressive kinking in fiber-reinforced
composite structures, is studied and a design diagram is introduced here. This diagram predicts a
likely dominant failure mode for given structural dimensions and material properties. In addition,
unstable delamination growth along the lamina interface under dynamic loading conditions is
simulated using an iterative computational procedure. The results predict that the crack tip velocity
can reach a fraction of the material wave speed leading to total structural failure in a very short
time. For the cylindrical shell. the inertial effect on the pressure-deformation relation is investigated
by comparing it with the static results. ) 1998 Elsevier Science Ltd.

1. INTRODUCTION

Due to their low weight and high strength, laminated composite materials are widely used
in many applications for engineering structures. However, composite materials are subject
to delaminations due to fabrication defects, imperfections, mismatch between different
fiber orientations, or misalignment of fibers. When layered structures are subjected to
compressive loads or impact forces, they can deform and fail in combinations of interacting
modes, such as local and global buckling, kink band formation and broadening, or delami-
nation growth. An earlier study (Nakamura et al., 1995) showed that an embedded delami-
nation can trigger collapse at a load level lower than the critical buckling load. In this
investigation, we attempt to identify the dominant failure modes and determine under what
conditions these failure modes occur.

Since delamination often occurs between two laminae with different fiber orientations,
it is necessary to model the interface crack between two orthotropic materials. Recently
Ting (1986) and Qu and Bassani (1989) have studied the static oscillatory fields near a
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crack tip and other characteristics of an interface crack in anisotropic materials. For a
crack propagating dynamically under steady state conditions, Yang et a/. (1991) derived
the asymptotic crack tip field using the analytical method for anisotropic materials intro-
duced by Stroh (1962). Stroh’s formulation was also adopted in the various static problems
solved by Suo (1990). For studying the transient dynamic problem, an effective com-
putational method was proposed by Lo er al. (1994) and it was used to analyze dynamic
crack propagation in composite laminae.

From the structural point of view, existence of embedded flaws can lower the critical
buckling load and significantly alter the post-buckling behaviors of structures. The pre-
and post-buckling behavior of composite laminates has been studied by Chai er al. (1981),
Simitses et al. (1985), Wang (1985), Shivakumar and Whitcomb (1985), Kardomateas and
Schmueser (1988), Yin (1988), Sheinman and Soffer (1991) and Nakamura et al. (1995).
The behavior of delaminations under dynamic loadings was also investigated by Grady
and Sun (1986), Sun and Manoharan (1988), and Wang er al. (1984). Useful experiments
for analyzing buckling in structures with delaminations were developed by Jones et al.
(1985) and Horban and Palazotto (1987).

An additional mode of compressive failure observed in fiber-reinforced composites is
kink band initiation and growth. A model to predict the peak and steady state stresses in
kink bands under compressive loading was recently presented by Liu and Shih (1995) and
Fleck er al. (1995). Experimental results of kink band formation and its band broadening
were also presented in Moran ef al. (1995) and Jelf and Fleck (1992).

In this study, effective computational procedures based on fracture and structural
mechanics approaches are used to characterize the behaviors of buckling and the inter-
laminar delamination between orthotropic materials. The analysis includes a parametric
study of the influence of geometric and crack variables. Based on the computed results, we
determine the effect of delamination on the overall structural strength and stability and
identify the likely failure mechanism for given geometry and material parameters. We have
also performed the analysis under dynamic loading conditions. The results are used to
quantify the difference between the results of relevant parameters in the static and dynamic
cases.

2. FAILURE MECHANISMS

2.1. Structural buckling

Thin structures under compressive load often fail by buckling. The stability problems
of composite structures with delamination have been studied by several investigators. Many
analytical solutions of buckling and post-buckling based on the Rayleigh—-Ritz method,
perturbation technique, the von Karman kinematic approach, and thin film models are
derived by Wang et al. (1985), Kardomateas and Schmueser (1988), Sheinman and Soffer
(1991) and Chai et al. (1981). In our previous study (Nakamura er al., 1995), we found
that composite plates subjected to compressive loading are influenced by two different
buckling modes. One, which characterizes the overall panel buckling, is referred to as global
buckling. The other, which is dominated by buckling of the delaminated ligament, is
identified as local buckling. Coupling of the two nodes not only lowers the critical load for
the flawed structure, but also may induce an unstable post-buckling behavior depending
upon the delamination size. It should be noted that previous works cited did not explicitly
model the crack tip deformation of the delamination, and did not show an unstable buckling
behavior.

Due to the complex geometries and local details of many structures, finite element
procedures are widely used for buckling analysis. The linearized buckling modes and critical
loads can be evaluated by the eigenvalue extraction technique. For structures with stable
post-buckling behavior such as beams, plates, and laterally loaded cylinders, the results of
linear bifurcation buckling calculations generally give a realistic estimate of buckling
strength. For imperfection sensitive structures with unstable initial post-buckling paths, the
actual buckling strength can be significantly reduced from that predicted by the linearized
analysis. Beginning with the work of Bijlaard and Fisher (1953), a growing appreciation of
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the role of local buckling modes on reducing the buckling load of a structure has been
established. Van der Neut (1969) proved that buckling mode interaction can lead to unstable
branches for structures in which each individual buckling mode has a stable post-buckling
path. Tvergaard (1976) analyzed the behavior of stiffened panels with nearly coincident
local and global buckling loads. He found a very strong sensitivity of the initial post-
buckling behavior for small imperfections but far less sensitivity to larger imperfections.
This is quite similar to the behavior reported in our previous study (Nakamura ef al., 1995)
for flat panels with initial delaminations. In this work, small initial delaminations lead to
unstable buckling with a sharp drop in the load-displacement response. Initial delaminations
beyond a critical size were found to lead to a reduced buckling load but a stable post-
buckling behavior.

2.2. Kink band failure

For thicker structures with aligned fiber-reinforced composite laminae, kink bands are
a common compressive failure mode. The key features controlling the kinking mechanism
are initial fiber misalignment and interlaminar matrix shear strength. A kink band typically
lies at an angle of 10 to 30 degrees relative to the normal direction of the fibers. The initial
kink band width is typically about 10 fiber diameters. The initial kink band formation is
caused by fiber bending and rotation and matrix deformation. These behaviors will gradu-
ally soften the band structure and initiate subsequent rapid fiber rotation, bending, and
larger matrix shearing deformation. This stage will be arrested by fiber lock up at a fiber
rotation of about 40 to 45 degrees. The kink band will begin to broaden within the band at
this orientation until fiber breaking occurs. Such phenomena are discussed in detail in the
various papers dealing with the kink band formation. The governing equation for kink band
initiation in plane stress with remote applied pressure can be expressed by (6, —o)+1 = 1,,
where g, and o, are the remote normal stresses, t is the remote shear stress, i characterizes
the fiber misalignment and the elastic deformation at incipient kinking, and t. is the critical
resolved shear yield strength of the matrix. For steady-state conditions, Moran et af. (1995)
have formulated an expression for the steady state kink band stress oy, using a piece-wise
linear approximation model

Ok = ! [z‘(Z tan[j’*};‘>+;(}\.(2 tanﬁvy{\)z} (@8]
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where f§ is kink band orientation, t, and y, are the yield shear stress and strain, G, and 7,
are the secondary (hardening) modulus and its critical strain, respectively. The minimum
okp 1n (1) corresponds to the steady state kink band stress. Using the models given by Liu
and Shih (1995) and the experimental analysis of Jelf and Fleck (1992), epoxy reinforced
with carbon fibers shows o, ~ 1.3 GPa and 132 MPa < o, < 330 MPa when the values
f=22", 1, =80 MPa and n = 0.06 are chosen.

2.3. Delamination growth

Interfacial delamination is another possible mode of compressive failure, perhaps
unique to composite Jaminates. Initial flaws within the structures may be due to weak
bonding of laminae, fiber misalignment, and voids and defects developed during the manu-
facturing process. Such embedded flaws are often observed at the interface of two laminae
with different orientations of fibers. These interlaminar flaws or delaminations essentially
remain closed during low compressive load. Once significant geometry change occurs, the
driving force for the delamination growth, the energy release rate increases rapidly. This is
especially so near the buckling load or during the unstable post-buckling phase. When the
critical toughness is reached, the delamination will grow and cause the entire structure to
fail.

In order to characterize the driving force for delamination growth quantitatively, the
energy release rate must be calculated accurately. Using the domain integral formulation,
the cnergy release rate of a crack tip propagating along the x, direction is given as,



1140 L.C. Wuetal

Ju; 0 & azuiaui u; ﬁzu,
G = Iitaiid: S °q _
’ L [U” v, ey +p(az2 ox, ~arox,a )T |4 (2)

where A4 is the domain enclosed by arbitrary path which surrounds the crack tip and the
weighting parameter ¢ is a smooth function of x, and x,. Also, g;, and u; are the Cartesian
components of stresses and displacements, respectively, W is the strain energy density and
T is the kinetic energy density at a material point. Under static loading condition, the terms
associated with time derivatives in (2) vanish.

The relationship between the energy release rate and the stress intensity factors for a
dynamically propagating interface crack was shown by Yang ef a/. (1991) as

H,,
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where K is the complex stress intensity factor and is given by K = K, +iK|;. Also, H,, is a
component of the hermitian matrix H and ¢ is the oscillatory index. Both H and ¢ depend
on material properties as well as the crack tip speed in the dynamic case. The complete
expressions are very complex and they are shown in Nakamura er al. (1995). Note that H,,
has a complex form for orthotropic bimaterials but reduces to 4/E* for a stationary crack
in isotropic bimaterials, where E* is the effective tensile modulus. The phase angle  is
another important parameter in defining the fracture toughness or the critical energy release
rate of an interface crack. Many experimental studies have shown that the critical energy
release rate can be defined as a function of the phase angle, i.e., 4.(). It is essentially the
ratio of the shear to normal traction ahead of the crack tip. The phase angle varies with
the distance from the tip due to the oscillatory nature of the field. Thus, the phase angle
must be defined in terms of a characteristic length scale L as
~_, {Im[KL"]
Y(L) =tan {Re[KL"“]} 4)

In our analysis, we have chosen L = 100 ym, which has been used in reporting the results
of many bimaterial experiments. In order to determine the phase angle, it is necessary to
calculate each mode of the stress intensity factor. The most accurate method to extract
mixed-mode stress intensity factors in elastic solids has been shown to be the “‘interaction
integrals” method (Lo et al., 1994). This integral in domain integral form is
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Here the terms with the superscript “‘aux” are the auxiliary functions defined from a known
solution. Using the dynamic interaction integral (5) and the relation between the energy
release rate and dynamic stress intensity factor (3), one can effectively extract the mode 1
and II stress intensity factors from the computed solution. The following equation gives
the relationship between the dynamic interaction integral 7 and the stress intensity factors
of the actual and auxiliary fields,

H,
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This is the fundamental equation which connects the computable interaction integral 1
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shown in (5) to the unknown stress intensity factors of the dynamic interface crack K. A
more detailed description of the procedure for extraction of those stress intensity factors is
given by Lo et al. (1994).

Since the models are loaded into the post-buckling regime, a large deformation finite
element analysis is employed. Throughout the calculations, strains are expected to remain
relatively small while rotations can be large. In order to account for the large rotations, the
energy release rate and the stress intensity factors are computed by the following procedure.
First the current direction of crack tip is determined from the upper and lower crack planes
near the tip and it is taken as the local x, direction. Then the displacement vectors at every
node within the largest integration domain A are rotated to the local coordinate system by
a coordinate transformation. All the other field quantities in (2) and (5) are recalculated in
terms of the transformed displacement field at every load increment. This could be inter-
preted as a corotational formulation of the crack tip analysis.

If the criterion for crack growth is controlled by the energy release rate, delamination
or crack growth occurs when the driving force % is equal to the critical energy release rate
4. Naturally, we postulate that %, be a function of the phase angle in composite solids as
in the case of isotropic bimaterial. However due to a lack of sufficient experimental data,
we assume the criterion for crack growth initiation to be independent of the phase angle in
the current analysis. Grady and Sun (1986) and Wang er al. (1984) have reported the
measured toughness %, for graphite reinforced epoxy laminate to range from 0.3 kJ/m? to
1 kJ/m?. In the section where a failure mode diagram is presented, the initiation toughness
is chosen as 4, = 0.72 kJ/m?. For the dynamic part of analysis discussed in Section 5, we
further assume, for simplicity of interpreting computed results, that the dynamic initiation
toughness %, as well as the dynamic crack propagation toughness %, is constant and
identical to the static value, ie., 4, = %,=%, =0.72 kJ/m>. In Lo et al. (1994) and
Nakamura ef al. (1995), several forms of %, which depend on the phase angle and the crack
tip velocity were proposed for isotropic bimaterial interface cracks. A similar expression for
the interface crack between differently oriented laminae is possible, but it would require
extensive experimental investigations. We note, however, that any dynamic toughness
criteria can be easily accommodated in the simulation procedure developed here.

3. COMPOSITE STRUCTURES WITH EMBEDDED DELAMINATION

3.1. Flat panel model

To determine the effect of an embedded delamination on the overall deformation mode
in composite structures, we initially consider a thin flat composite panel consisting of four
differently oriented orthotropic laminae. This model was also considered in our previous
analysis (Nakamura er al., 1995). However, in the current analysis, the applications of the
initial geometric perturbation and loading boundary condition are refined and more accu-
rate results are obtained. The panel is subjected to horizontal compressive load applied at
the ends as shown in Fig. 1(a). The length of this panel is chosen to be 2L = 1 m and the
total width of the four bonded laminae is set at t+ = 0.02 m. Plane strain conditions and
unit thickness in the out-of-plane direction are assumed. At the center of the panel, we
model a finite interlaminar delamination of length 2a between the first and second layers
from the bottom. Each layer has identical material properties which are modeled to rep-
resent a typical epoxy reinforced by unidirectional graphite fibers. The transversely isotropic
model is used to represent the material behavior and the material constants are chosen as
E, = 103 GPa, E; = 6 GPa, Gy = 2.1 GPa, G, = 5.3 GPa, v, = 0.3 and p = 138 kg/m?,
where the fiber direction is denoted by subscript **L” and the transverse direction is denoted
by “T”’. The transverse direction is defined as the plane of isotropy. In 2D finite element
analysis, only two fiber orientations are compatible with plane strain condition and they
are 0" and 90°, where 0° indicates the fiber direction parallel to the panel while the fiber
direction of 90° is the out-of-plane direction. The 0° orientation is much stiffer than the 90°
orientation with respect to the in-plane horizontal force. There are two possible laminate
stacking sequences which are symmetrical about the mid-horizontal line. They are
[0°/90°/90°/0°T and [90°/0°/0"/90"] combinations. Since the latter arrangement yields very
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Fig. 1. Schematic of two composite structures consisting of four orthotropic laminae. The orien-

tations of laminae are {0/90°/90"/0"). (a) Flat panel which contains an interlaminar delamination

between the third and fourth layers from the top and subjected to compressive axial load. (b)

Cylindrical shell which contains a delamination between the first and second layers from the outer
surface and subjected to external pressure.

weak resistance against flexure, only the former case is considered in this analysis. Effects
of different stacking sequences including the latter case and panels with greater number of
laminae are investigated in Wu and Nakamura (1997). In carrying out the finite element
analysis, several computational models are constructed for different delamination lengths.
Since this model possesses a symmetrical condition across the mid-section, only the right-
half of the panel is modeled in the finite element analysis. The symmetry boundary condition
is prescribed in the horizontal direction along the vertical mid-plane. Due to the possibility
of unstable deformation, the compressive load application is controlled by increasing the
end-shortening displacement J. Furthermore, the displacements of the entire nodes along
the end plane are constrained in such a way that large local deformation in the middle node
is avoided. The total reaction forces at these nodes are reported as the equivalent applied
load P. The finite element meshes for various delamination lengths are generated by a mesh
generator program which accurately models the crack tip region and the transition to a
coarser mesh. Each mesh contains about 6500 4-noded plane strain elements for the half-
model. As in other fracture analyses, sufficiently small elements are employed near the
delamination tip (the smallest near tip element size is about 0.017). However the elements
throughout the model are also kept small enough (the largest element length is less than
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0.17) so that the buckling modes can be captured accurately. To estimate the accuracy of
the reported results, we compared solutions from a model using quadruple the number of
elements and found the solutions to be nearly the same. During the loading range of
interest, we find that strains remain relatively small (|&,.,] < 0.03 at 4 = 1 kJ/m?) but the
rotation becomes quite large.

3.2. Cylindrical shell model

In order to study the effect of structural geometry under compressive loading, we have
chosen a cylindrical shell subjected to an external pressure as the next model. This choice
is made not only because it is perhaps the second most common geometry next to a flat
panel but also it has deformation characteristics quite distinct from the flat panel case.
First, it is known that the post-buckling deformation of a long cylinder under external
pressure exhibits more stable behavior than that of the flat panel. Second, the magnitude of
internal hoop stress at the buckling load is significantly higher in the pressurized cylindrical
geometries considered here. As in the flat panel, the cylindrical shell is also made of four
differently oriented orthotropic laminae with the stacking sequence [0°/90°/90°/0°] as shown
in Fig. 1(b). Here 0° indicates fibers in the circumferential direction while the 90° cor-
responds to a lamina whose fibers are in the out-of-plane or the axial direction of the
cylinder. In this model, the shell radius is chosen to be R = 0.2 m and the thickness is set
at 7 = 0.02 m. As in the case of flat panel model, we assume an interlaminar delamination
to exist between the first and second layers from the outside. To conform to the arc of the
cylinder, the delamination is curved and its size or arc length is measured by the so-called
delamination angle, 20. For each laminate, the identical material properties as the flat panel
are assumed. But, unlike the flat panel case, the loading can not be controlled through the
equivalent displacement in the cylindrical model due to its geometrical condition, and the
actual radial pressure must be applied uniformly over the outer element boundary of the
shell. Although such a loading condition is more difficult to impose in any buckling analysis,
this problem is overcome by taking extremely small load increments near the buckling
regime. Fast convergence techniques such as the RIKS method are not suitable here since
the near tip field is found to be sensitive to the size of load increment. We also note that
any force controlled boundary condition can never be used in the flat panel analysis since
some models exhibit highly unstable post-buckling behavior, but a more stable load-
deflection relation in the cylindrical case makes such a loading condition possible. In
constructing the finite element mesh, we consider only the top half of the cylindrical shell
since it possesses a symmetry across the mid-horizontal plane. The symmetry condition is
imposed by fixing the vertical displacements of the nodes along the horizontal section. A
mesh generator program is again used to construct meshes with different delamination
lengths. A typical mesh with 8540 4-noded plane strain elements is shown in Fig. 2. As in
the case of the flat panel, accurate simulation of buckling deformation requires every
element in the model to be relatively small. The near tip region of the mesh is enlarged and
also depicted in Fig. 2.

4. COMPUTATIONAL RESULTS

4.1. Critical buckling load

Initially, the finite element analysis is carried out to determine the critical buckling
loads of the structures containing an embedded delamination. The eigenvalue analysis
described in Section 2.1 is performed for models with various delamination lengths. For
the flat panel model without delamination (i.e., a/L = 0), the critical buckling load is found
to be P, = 600 kN. When the delamination exists within the panel, the buckling load
decreases with increase in its length as shown in Fig. 3(a). However, this effect does not
appear until the delamination length is nearly a/L = 0.3. The physical interpretation of this
transitional delamination length is that the local buckling strength of small delaminated
ligament section with the [0°] laminate (i.e., portion of the 4th layer with length 2a) remains
greater than that of the entire panel without any delamination. Thus the existence of a
small delamination does not weaken the panel or lower P. When the length becomes large
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Fig. 2. Slightly deformed finite element mesh of the top half of cylindrical shell with the delamination
angle 0 = 10". The near tip region is enlarged.

enough such that the local buckling load of the ligament section falls below 600 kN, the
effective P, of the panel also decreases. Once the ligament section begins to buckle, it
generates a bending moment around its roots (i.e., crack tip) and accelerates the buckling
of the entire panel. This phenomenon may produce an unstable post-buckling behavior
and will be discussed later.

As the ligament length increases beyond a/L ~ 0.6, the ligament (4th layer) and the
rest of the panel (1st to 3rd layers) deform more independently and the rate of decrease in
P, slows down. Although not shown in the figure, the lowering of P continues until
a/L = 0.9 when P, = 102 kN. This value is equal to the sum of the buckling loads of two
separate panels, one with [0°/90°/90°] and the other with [0°] laminae. Indeed at this
delamination length, there is no coupling of the ligament and the rest of the panel, and they
essentially buckle as independent structures. We note that the computed buckling mode of
the flat panel with an embedded delamination exhibits overlapping of the ligament on the
rest of the plate, which is physically inadmissible. In the pre- and post buckling analysis
presented in the next section, a small delamination opening is prescribed in the initial
geometry. This ensures the opening of the ligament during the loading.

The critical buckling load of the cylindrical shells containing delaminations of various
lengths are shown in Fig. 3(b). The trend is similar to that observed in the flat panel model.
When the crack arc length or the half delamination angle is 6 < 57, the critical pressure p,,
remains very close to that of the shell without a delamination (i.e., # = 0”). As the delami-
nation angle increases, the gradual loss of strength occurs. When 6 ~ 177, the rate of
decrease slows down and p,, essentially levels off. Unlike the flat panel case, the relative
extent of drop in the buckling pressure for long delamination is much smaller. For 8 > 17°,
the buckling mode shows a localized deformation of the delaminated region while the rest
of the shell remains nearly circular. Such physical behavior may explain the stabilizing of
Po- Also different from the flat panel results, the buckling modes of cylinders produce
both opening and overlapping of delaminated region. Whether the delamination opens or
overlaps depends on its location, laminate orientations and total number of laminae. These
results and more precise description of the buckling mode shapes and how the perturbation
is prescribed to the original geometries of the flat panel and cylindrical shell are summarized
in Wu and Nakamura (1997). We note that, prior to reporting the results shown in Fig. 3,
a rigorous mesh convergence study was performed. For the cylindrical shell with 6 = 157
shown in the figure has 8364 elements and p., = 16.16 MPa. With different mesh refinements,
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Fig. 3. Critical buckling load of composite structures containing different delamination sizes. (a)

Critical axial load vs normalized delamination length. A large drop is observed when a/L = 0.3. (b)
Critical external pressure vs the half delamination angle. A more gradual drop is observed.

the results are; p., = 17.37 MPa with 1116 elements, p., = 16.72 MPa with 3544 elements,
and p.. = 16.14 MPa with 13,001 elements.

4.2. Pre- and post-buckling behavior of flat panel

In order to determine the fracture parameters of the delamination and the deformation
characteristics of the flat panel, we prescribed a small geometry perturbation (imperfection)
in the shape of the critical buckling mode to the original mesh. This mesh is used in the
pre- and post-buckling analysis. During the calculation, the displacement at the end-plane
node is gradually increased over many increments and the reaction force is calculated as
the equivalent axial load. In the quasi-static analysis, no delamination growth is simulated
and the embedded delamination is assumed to remain stationary during loading. In Fig. 4,
the progressive deformation of the panel, including the increasing opening of the delami-
nated ligament, during the post-buckling regime is shown for the model with a/L = 0.4.
For each deformed state, the corresponding end-plane displacement and the axial load are
noted. In this static analysis, no delamination growth is simulated, and the delamination
length remains fixed in each model during loading. Prior to buckling, the amount of
deformation is very small and the delamination essentially remains closed. The increasing
end-point deflection associated with the decreasing load noted in the figure clearly indicates
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Fig. 4. Outlines of the flat panel with a/L = 0.4 at various stages of post-buckling deformation.
Corresponding end-shortening displacement and axial load are noted.

the unstable buckling behavior of the panel. Also in the figure, two independent buckling
modes, the ligament and the overall panel, can be observed.

The load versus deflection relationship of panels containing various delamination
lengths are plotted in Fig. 5. For panels with a short delamination (¢/L < 0.2), the crack
never opens up (even with a substantial initial imperfection) and the panels behave ident-
ically to the one without any delamination. Although this post-buckling curve appears
nearly horizontal, it has a small upward slope and the post-buckling behavior is char-
acterized as stable. Once the delamination length reaches a/L = 0.3, the crack opens up
and the initial post-buckling response exhibits highly unstable behavior. By carrying out
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Fig. 5. The load-deflection curves of flat panels with various delamination lengths. Unstable initial
post-buckling behavior prevails for 0.3 < a/L < 0.6.
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several calculations, we have determined the precise transitional delamination length (at
which unstable post-buckling occurs) to be a/L = 0.24. The unstable post-buckling for
panels with longer delamination is the result of the coupling of the two buckling modes,
one by the ligament section and the other by the overall panel. When the ligament section
begins to buckle, it creates a local root bending moment which promotes the buckling of
the entire panel. This mechanism operates until a/L ~ 0.6, and at this delamination length,
the two sections begin to buckle independent of each other as described earlier. This explains
the re-stabilizing of the post-buckling behavior for a/L > 0.6 shown in the figure. The
maximum or peak load for each delamination length is nearly identical to the corresponding
P, obtained by the eigenvalue analysis, shown in Fig. 3(a). This assures no excessive
perturbation is added to the original geometry.

Except for the panels with very long delamination, the crack essentially remains closed
prior to the buckling or during the pre-buckling stage. After the panel begins to buckle, the
delamination opens and the energy release rate and the mixed-mode stress intensity factors
are calculated using the domain integral forms given in (2) and (5). The results for energy
release rate are plotted as a function of the end-shortening displacement 6 in Fig. 6(a). The
figure shows a rapid increase of % once the panel buckles, especially for the cases with
shorter delamination length. As an example, a panel with ¢/L = 0.3 buckles at § = 0.3 mm
and ¥ increases rapidly for greater 0. In fact, it has its highest rate of increase during the

20 ———r—r—p—r—r
[ Flat Panel 1
1.5 [ a/L =03 ]
& [ ]
E ]
- 1.0 4
] L 4
g 4
) [ ]
0.5 1
0-0 [ A A A
0.0 0.5 1.0 1.5 2.0
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80° T T T v
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o [ a/L=03 04
40 1
>
20° .
0.7
oo B 'l r A A A i A 1 A r T
0.0 0.5 1.0 1.5 20
6 (mm)
(v)

Fig. 6. (a) Energy release rate as a function of end-shortening displacement for flat panels with
various delamination lengths. (b) Corresponding phase angle.
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post-buckling stage. For the models with longer delaminations, the % increase is more
gradual. The phase angle is also determined at every load increment from the computed
mixed-mode stress intensity factors. In reporting the phase angle, the characteristic length
is chosen to be L = 100 um, which is a typical value used in many interface fracture
analyses. The phase angle shown in Fig. 6(b) generally increases as the prescribed dis-
placement increases. Note that the changes in ¢ occur solely because of large displacement
effects and not by a nonlinear material response. The panel is assumed to remain linear
elastic throughout the calculation. In all cases, the increase in the phase angle implies a
greater shear mode relative to the tensile mode in the near tip region.

4.3. Pre- and post-buckling behavior of cylindrical shell

The loading condition of the cylindrical modet is imposed by the pressure applied on
the outer most element layer of the shell. Throughout the calculation, the direction of the
pressure at every element is always kept normal to its surface as it rotates during loading.
Unlike the flat panel case, equivalent displacements can not be prescribed and the load
increments are kept extremely small especially near the buckling load. The outline of the
deformed cylindrical shell with the half delamination angle § = 15° at the pressure p = 16.1
MPa is shown in Fig. 7(a). The deformed geometry shows the bulging out of the outer
delaminated ligament layer. This deformation shape is somewhat counter-intuitive since
the ligament section bulges out against the large compressive pressure applied at the surface.
To compare with the computationally simulated deformed shape, a post-test photograph
of an actual specimen which underwent high pressure testing is shown in Fig. 7(b). Although
many geometrical parameters including the total number and orientations of laminae are
different and one must be careful in making any conclusions, both models clearly show the
bulged out sections and the failure pattern of the specimen appears to be consistent with
the deformed computational model. In the figure, the photograph represents the unloaded
configuration of the specimen and shows a more circular shape (excluding the damaged
region), while the deformed shape of the computational mode! shows a more elliptical
shape due to its loaded state.

In order to measure the amount of deformation, we introduce a displacement par-
ameter w which defines the change in diameter of the shell along the symmetrical plane (see
Fig. 8(b)). Under small external pressure, w is linearly proportional to p, but as p approaches
the buckling pressure, the increasing rate of w changes. The results of w as function of p
for shells with different delamination angles ranging from 6 = 0° (no delamination) to 20°

deformed computational model p tested speciman
at p= 16.1MPa with 8 = 15° 4 1 (unloaded configuration)

(loaded configuration)

(@ (b)

Fig. 7. (a) Deformed outline of the cylindrical shell containing an interlaminar delamination,

showing the bulging out of the ligament. (b) Photograph by Hercules Aerospace Corp. which shows

a cross-section of a composite cylinder which underwent high pressure testing. It also shows the
damaged bulged-out section.
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Fig. 8. (a) Pressure vs deformation parameter of cylindrical shells with various delamination angles.
All results indicate stable post-buckling behavior. (b) Undeformed and deformed top-half of the
shell, illustrating the definition of the deformation parameter .

are shown in Fig. 8(a). In Fig. 8(b), graphical representation of the displacement parameter
w is shown. Unlike the flat panel case, the cylindrical shell always exhibits increasing
pressure with increasing deformation or stable post-buckling behavior regardless of the
delamination size. However, the deformation increase with respect to pressure is slightly
different in each case as described below.

Figure 8(a) exhibits the interesting characteristic that for small pressure levels, the
apparent structural stiffness increases as the size of the delamination increases. The only
exception to this is the twenty degree case which is initially softer than the fifteen degree
case but stiffer than the ten degree case. As will be discussed later, the 8 = 20" case is not
considered because it exhibits delamination ligament overlapping under all load levels. This
apparently anomalous behavior is explained by the stress intensity factor histories shown
in Fig. 9. As can be seen, K is initially negative for all delamination lengths. The interlaminar
stress state associated with ligament bending imparts an outward rotation to the shell in
the vicinity of the delamination. Figure 9(a) shows the slope of K| vs p to change from
negative to positive at 12 MPa. A further pressure increase causes the delamination to open
up. This reversal in ligament bending is associated with a reversal in the sign of the
incremental interlaminar bending moment at the delamination tip. Further pressure loading
thus adds an incremental negative rotation to the shell in the vicinity of the delamination,
shown in Fig. 8(a).
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Fig. 9. Mixed-mode stress intensity factors for cylindrical shells with various delamination angles
for (a) Mode I and (b) Mode II. Negative K; corresponds to delamination in closure mode.

For a model with a larger delamination, the rapid increase of w occurs more suddenly
near its critical buckling pressure. In general, the deflection w,, opposite to the delamination,
is slightly greater than w, on the delamination side. The delamination side is locally stiffer
due to its opening as shown in Fig. 8(b). In the cylindrical shell, a coupling of the ligament
buckling and the buckling of the rest of the shell also occurs. Although more localized and
with a smaller effect than the flat panel case, the bending moment generated by the ligament
buckling pushes the other layers inward. This phenomenon explains the greater rate of
increase in w near the buckling load with a delamination. In addition, from the calculated
reaction forces, we have found that the outer [0°] laminate carries up to 95% of the total
circumferential load in the shell and the magnitude of the internal hoop stress is extremely
high. The high compressive stress in this layer can trigger a kink band formation.

The evolution of the near tip state in the cylindrical model is more complex than that
of the flat panel. First, the magnitude of compressive stress is at least several times greater
than that of a flat panel at a same energy release rate. Second, the increase in the delami-
nation opening displacement or the tensile mode is not always monotonic. The same is true
for the shearing mode which switches its direction during the loading. In order to illustrate
the evolution of the field surrounding the delamination, the mode I and 11 stress intensity
factors are plotted in Fig. 9. For the mode I stress intensity factor shown in Fig. 9(a), all
the models have negative K| initially. This implies that the externally applied pressure closes
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the delamination. However this does not always mean the crack faces overlap since the
perturbation prescribed to the original geometry has a small initial crack opening. The
magnitude of the crack closing displacement increases with the delamination size. In fact,
for 8 = 20°, the delamination never opens up and the crack faces eventually overlap at
higher load. We have also carried out the calculations with contact elements but the results
showed unstable computational behavior and are not presented here. For the cylindrical
shells with shorter delamination, K; becomes positive at higher pressure. However for
0 = 10° and 15°, the K| increase is halted and it actually begins to decrease at some greater
pressure. Somewhat similar results are seen for the mode II stress intensity factor in Fig.
9(b). In all cases, Kj, is negative at lower pressure but changes its sign and increases rapidly
at higher pressure. The abrupt decrease in K| occurs at the same pressure level as the rapid
increase in Kj,. At this point the ligament opening is large and the delamination process is
in transition from an opening to a peeling mode.

Although these events are worth noting, the evolution of the near tip field at low
pressure has a small influence on the failure when it occurs at a much higher pressure. In
order to investigate the crack driving force in the critical range, the energy release rate is
plotted for the pressure range 13 MPa < p < 16 MPa in Fig. 10(a). In the figure, the
dashed-line portions for # = 10° and 15° indicate when K| is negative and the delamination
is in closure mode. Since the critical energy release rate of this laminate is assumed to lie in
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Fig. 10. (a) Energy release rate and (b) phase angle in the pressure range 13 MPa < p < 16 MPa.
The dashed lines indicate the delamination in closure mode (X; < 0).
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the interval %, = 0.5-1 kJ/m?, the results predict delamination growth to occur when the
pressure is p = 15—-16 MPa, which is 75-80% of the buckling pressure of a flawless cylinder.
This implies that failure by delamination growth can occur at a lower load than p., or prior
to buckling. Delamination growth is thus predicted to be the critical failure mode in the
pressurized shell. The phase angle at the same pressure range is also shown in Fig. 10(b).
Unlike the flat panel case, a large variation in  is observed for different delamination
angles. The model with = 5° has a tensile dominated field while a much greater shear
mode is present in the model with § = 15"

4.4. Competition of failure modes—design diagram

In a laminated structure containing an embedded flaw and subjected to large com-
pressive load, possible failure modes can be characterized as structural buckling, delami-
nation growth, kink band formation or any combination of them. Based on the results
presented in the earlier sections and additional calculations, the primary failure mode for
a particular structure and boundary condition is examined in this section. The main purpose
is to identify a likely failure mode and use this information to strengthen the overall integrity
of a structure. Obviously the determination of the primary failure mode or the initial source
of failure depends on the shape of the model as well as its geometrical dimensions. For this
analysis, we have selected the cylindrical shell as the model structure, and its shell thickness
and radius are chosen as variable geometrical dimensions. For the flat panel model analyzed
in the earlier sections, the dominant and important failure mode always appears to be
buckling since the internal compressive stress never reaches the magnitude needed for the
kink band formation, and the delamination growth is likely to occur only after buckling.

Initially the radius of the cylinder is set constant at R = 0.2 m while the shell thickness
is varied. The initial embedded delamination size is assumed to be 6 = 5". A smaller 0 is
not selected because such a delamination does not always open. In addition, we have found
that a small variation in the delamination size does not affect the dominant failure mode.
The location of the delamination and the stacking sequence of the laminae are assumed to
be the same as those of the cylindrical model described earlier. In Fig. 11(a), the energy
release rate of cylindrical shells with different thicknesses are shown. Although many
different thicknesses are calculated, only the results of 1 = 16 mm, 20 mm and 24 mm are
plotted for clarity. All three models have a similar rise of % except at the initial pressure
when % starts to rise differently in each case. This initial critical pressure increases with the
thickness of the model. Note the energy release rate does not scale with the thickness. In
each model, the maximum compressive hoop stress oneep 18 also recorded from the computed
stress field within the entire shell during the loading. This information is needed in order
to determine the critical pressure when the kink band formation is likely to occur in the
fiber-reinforced laminae. The maximum compressive stress usually occurs in the outer
most lamina adjacent to the delamination. As see in Fig. 11(b), this stress is not linearly
proportional to the loading pressure at higher load level. At higher pressure loads, a large
rotation apparently shifts the stress distribution within the shell and accelerates the rise of
the stress.

Using these data for %, ojio;, and also the buckling pressure p,, for models with different
thicknesses, one can construct a diagram which contains three domains of failure mode. In
order to specify the likely dominant failure mode, critical energy release rate 4, and the
steady state kink band formation stress oxy of the laminate must be given. In constructing
the diagram, we have fixed the critical energy release rate to be %, = 0.72 kJ/m*. Although
this particular value is chosen rather arbitrarily, it is in the range of several experimentally
observed values of ¢,. Since % increases very rapidly once it starts to rise (see Fig. 11(a)), a
variation of ¢, within any reasonable range makes very small difference in the corresponding
critical pressure for delamination growth. With these choices, the only remaining variables
are the shell thickness ¢ and the kink band stress ogp. Our aim is to draw lines which
separate the domains of various dominant failure modes on the plane defined by 7 and oy.
Such a diagram is shown in Fig. 12(a), where the thickness is normalized by the shell radius.
Here the transition boundary separates the domains of delamination growth and kink band
initiation. In the figure, a vertical line is also drawn to separate the buckling domain. Our
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Fig. 11. (a) Energy release rate vs pressure for shells of different thickness. The radiusis R = 0.2 m

and the delamination angle is § = 5°. (b) Magnitude of the maximum hoop stress inside the shell.
The magnitude increases with decreasing thickness.

computational results suggest that structural buckling occurs only after ¢ reaches %, and
the magnitude of a7, surpasses oy regardless of the thickness. This means that buckling
can not be predicted as the primary failure mode in any of the cylindrical shell geometries
considered. However, very thin shells (#/R — 0), which have small critical buckling pressure,
may not have sufficient stiffness to sustain any sizable delamination growth or kink band
expansion. Thus, in these shells, the structural buckling is more likely to take over as the
dominant failure mode. Here, an operational condition for buckling is set for any shells
whose buckling pressure is p., < 1 MPa. This happens when the normalized thickness is
t/R < 0.036, and this domain is labeled as the buckling failure mode independent of ogp in
the diagram. For thicker shells, one must first choose an appropriate kink band stress for
a given fiber-reinforced composite material. For an example, if oxp = 0.8 GPa, then a
horizontal line can be drawn at this stress level in the diagram, denoted as ‘line A’ in Fig.
12(a). Next, if the shell thickness is chosen as ¢ = 20 mm, another line is drawn vertically
at t/R = 0.1, denoted as ‘line B’ in the figure. The intersection of the two lines determines
the failure mode of the given model. In this figure, it is marked as ‘C” and falls within the
kink band domain. Thus, this shell with specified properties and dimensions is more likely
to fail by kink band formation. Such a process to find the failure mode may be useful in
the design of shells since it identifies the weakest failure mode. In this example, one would
know that increasing o directly benefits the overall integrity of the shell.
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Fig. 12. Diagrams depicting domains of critical failure modes for a cylindrical shell with ¢, = 0.72

kJ/m?. The delamination growth and kink band domains are separated by the transition boundary,

while the buckling domain is shown for 7/R < 0.036 which corresponds to p,, < | MPa. The vertical

axis represents the critical kink band formation stress for a given laminate. (a) For the shell with

the radius R = 0.2 m. The point C is marked when oxp = 0.8 GPa and t = 20 mm are chosen. (b)

For variable shell radius ranging from R = 0.2 m to 2 m. The transition boundary shifts downward
as the radius increases.

In order to create a more comprehensive diagram, additional calculations are per-
formed for shells with different radii. The results are shown in Fig. 12(b). The transition
boundary which separates the delamination growth and the kink band formation shifts
downward for shells with larger radius. Alternatively, as the radius increases, the domain
of delamination growth enlarges and the likelihood of this failure mode increases. In fact,
the diagram predicts that for a large shell with R = 2 m and ¢ < 400 mm, the failure mode
is always the delamination growth as long as oxg > 0.6 GPa, except possibly for very thin
shells when the buckling mode can dominate. We caution, however, that these diagrams
ignore many other factors which influence the failure characteristics of shells. The diagrams
should be only used as approximate reference. Nevertheless, they still offer useful infor-
mation in predicting a primary failure mode.

5. DYNAMIC ANALYSIS

The results for the flat panel presented in the earlier section suggest a possible unstable
delamination growth in the post-buckling regime. Furthermore, laminated structures, both
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flat panels and cylindrical shells, may react differently under dynamic loading condition
due to inertial effects. In this section, we present behavior of these models under a rapidly
increasing load. Dynamic delamination propagation is also simulated using a specified
fracture criterion. As described in Section 2.3, there are not sufficient experimental data for
the dynamic toughness of interfacial cracks in laminated structures. Here, we assume the
growth initiation and the propagation of the delamination to be solely controlled by the
energy release rate. More precisely, the required condition for delamination growth
initiation 1s 4 = ¥, and a continuous growth is sustained if the condition ¥ = %, is met.
This assumption was also used in the simulation of interfacial crack propagations in a
bimaterial specimen (Nakamura et al., 1995) and the results agreed very well with the
experimental record given by Lambros and Rosakis (1995). For the interface crack between
graphite fiber-reinforced epoxy laminae modeled here, we have set the dynamic initiation
toughness %, as well as dynamic crack propagation toughness %, to be 4, = %, = 0.72
kJ/m? based on limited data available for this composite material. In general, the toughness
or the resistance against fracture is influenced by the orientations of fibers, the loading rate,
the phase angle and the crack tip velocity. If these factors were included, the near tip
deformation and stress states at the initiation and propagation would certainly change.
However, at the structural level, the present criterion, i.e., fixed toughness condition, should
still yield an accurate description of the deformation behavior. During the propagation
simulation, a correct crack tip velocity must be found so that the crack driving force or the
available % is always equal to %,,. In the finite element analysis, such a condition is only
achieved accurately through an iterative process. An effective computational procedure for
the dynamic crack propagation which incorporates this process was developed by Lo et al.
(1994) and is employed here.

5.1. Flat panel model

In the dynamic analysis of the flat panel, an initial delamination length is assumed to
be a,/L = 0.3 and the subsequent delamination propagation from this length is simulated.
The location of the initial embedded delamination and the orientations of laminae are
identical to the model shown in the static analysis. Equal dynamic loads are applied
simultaneously at both ends of the panel so that the symmetry condition is still preserved
across the middle vertical plane. A similar mesh for the half-model is also used but the
region of near tip elements is extended to accommodate the growing delamination tip.
Unlike the static case where the loading is controlled by the prescribed end displacement,
it is applied as a uniform pressure on the element faces across the end plane in the dynamic
analysis. Initially, the magnitude of pressure is linearly increased with time and the rate of
resultant force is set as P = 25 MN/s. For ¢ > 40 ms or after P reaches 1 MN, the magnitude
of the load is held constant with respect to time. These rate and magnitude are chosen after
a few trial calculations so that the buckling occurs while the structural inertia is still
important and the delamination grows at sufficiently high speed. The delamination path is
assumed to remain on the interlaminar boundary and no kinking out of the interface is
modeled. The computations are carried out for about 32 ms after the initial load is applied
and terminated when the crack tip propagates outside the region of near tip fine elements.

The dynamic energy release rate is calculated using (2) and the results are shown in
Fig. 13(a). It takes about 15 ms for sufficient load to build up and the delamination begins
to open up. The energy release rate shows a gradual increase as the structure enters the
post-buckling regime at this elapsed time. At around 7 = 30 ms, % shoots up, indicating a
sudden increase of the deformation associated with the buckling. When % reaches the
critical initiation toughness, 4, = 0.72 kJ/m? at ¢ = 31.4 ms, the displacement constraint
holding the crack tip node is released and propagation begins. During the delamination
propagation, the dynamic % is always maintained at %, = 0.72 kJ/m? to satisfy the propa-
gation criterion. To control the dynamic % at this level, a suitable crack tip velocity at every
increment is found using the iterative technique. The resulting velocity as it accelerates after
the initial growth is shown in Fig. 13(b). In the finite element model, the delamination is
simulated to propagate over 21 elements or A« = 4.5 mm over the time period of about
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Fig. 13. (a) Dynamic energy release rate for the flat panel during stationary and propagation phases.
The delamination starts to grow when % reaches %, = 0.72 kJ/m” at t = 31.4 ms. (b) The resulting
crack tip velocity during propagation phase.

400 us. At the last calculated increment, the velocity is about 18 m/s. If the similar increase
in v continues for greater ¢, the whole panel should separate within about 5 ms.

5.2. Cylindrical shell model

A similar analysis is also carried out for the cylindrical shell model. Here, the initial
half delamination angle is assumed to be 6, = 5° and a linearly increasing pressure with
respect to time is applied at the outer shell. The loading rate is set at p = 3.2 GPa/s. The
results of dynamic ¥ after the load application are shown in Fig. 14(a). For this model, the
energy release rate begins to increase at a much earlier time than the flat panel result.
Although the two models have comparable dimensions, the difference is quite significant.
One reason is that the location of the delamination is much closer to the load application
boundary in the cylindrical case. A more important reason is that for the flat panel, the
delamination opening requires buckling of the panel while that of the cylindrical model
occurs prior to the buckling. Therefore, a much earlier rise in % is possible in the cylindrical
shells. The figure also shows an oscillatory behavior for £ < 3.8 ms. This can be attributed
to the inertial effect due to the pressure wave from the outer layer since it initially pushes
the delaminated ligament inward. Indeed, the computed dynamic K is negative during this
period. Although such a closure mode is not physically possible, the calculations still show
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Fig. 14. (a) Dynamic energy release rate for cylindrical shell during the stationary and propagation
phases. The delamination starts to grow when  attains 4, = 0.72 kJ/m* at ¢ = 4.86 ms. (b) The
resulting crack tip velocity during propagation phase.

finite 4. However, since the magnitude of % at the initial phase is only a small fraction of
%,, this process should not affect the deformation state of the shell at the subsequent
delamination growth. At later time, the ligament starts to bulge out (similar to the statically
deformed shell shown in Fig. 7(a)), and % begins to increase monotonically. At ¢ = 4.86
ms, it reaches 4, and the propagation begins. The dynamic propagation is simulated over
Aa = 5 mm or 22 element lengths during the total propagation time period of 50 us. At the
end of simulation, the crack tip velocity reaches v = 170 m/s, as shown in Fig. 14(b). This
value is a significant fraction of material wave speed and almost an order of magnitude
larger than that of the flat panel. The faster delamination speed may be attributed to greater
stored energy available to drive the propagation. The cylindrical shell has much higher
internal stresses than those of the flat panel for a given energy release rate. If the increase
in v continues at a similar rate, complete failure of the shell is predicted within a sub-
millisecond time period.

In order to illustrate the dynamic deformation of the shell at the structural level, the
deformation parameter w (shell narrowing along the symmetry line) is plotted in Fig. 15(a).
The figure shows a smooth increase of « with respect to time. The deformation parameter
is also shown with respect to the pressure applied at the outer boundary in Fig. 15(b). Note
the pressure increase is linearly proportional to time. The dynamic result is compared with
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Fig. 15. (a) The deformation parameter w under dynamic loading condition shown as a function of
time. (b) The deformation parameter and corresponding pressure under dynamic and static loading
conditions.

the corresponding static result in the figure. The two cases are in a good agreement, but
with the dynamic case generally having smaller deformation than that of the static case.
Such a result is expected since some inertia induced response time lag should exist for the
dynamic case. The load is applied at the outer surface while w is measured at the inner
shell. However near p ~ 5 MPa, a greater  is observed for the dynamic case. It is probably
due to the initial inertial effect by the stress wave, which is consistent with the oscillatory
% observed at t = 1 ~ 3 ms. The energy release rate is also shown for the dynamic and
static cases as functions of applied pressure in Fig. 16. The results show a greater difference
in the two cases. The dynamic ¥ trails the static ¢ by the pressure level of about 1 MPa. In
fact at the critical value of 4 = 0.72 kJ/m> the corresponding pressures are 15.55 MPa and
14.58 MPa for the dynamic and static cases, respectively. This suggests, for the cylindrical
shell, that the static relationship for ¢ and p is more conservative than the dynamic
relationship if similar critical fracture toughnesses are assumed for the static and dynamic
cases. If a larger toughness prevails under the dynamic loading (as in many materials), then
the difference in the critical pressures leading to delamination growth is even greater. In the
figure, the dynamic % rises only up to 0.72 kJ/m* because the delamination growth condition
is imposed to simulate the propagation for this case.
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Fig. 16. The energy release rate shown as a function of the applied pressure for the dynamic and

static cases. The results are shown for large pressure, p > 10 MPa. Note the dynamic ¥ levels off at

0.72 kJ/m? since the toughness criterion is imposed during propagation. The static % continues to
increase since no condition is applied.

6. DISCUSSION

A comprehensive analysis is carried out for different laminated structures subjected to
a compressive load. In particular, two types of structures containing an interlaminar
delamination are considered and their deformation characteristics are carefully analyzed
with a view toward identifying dominant failure mechanisms. Some important structural
deformation modes are observed in the flat panel model. When the panel contains an
embedded delamination and is under uniaxial compressive load, a coupling of the global
panel buckling and the local ligament buckling produces “‘unstable” post-buckling
behavior. Such a condition is potentially hazardous for the integrity of structures. The
energy release rate of the embedded delamination also increases rapidly during the unstable
post-buckling phase. The rapid increase in energy release rate may cause delamination
growth which may further reduce the compressive strength. The large shear stress observed
during the loading may play an important part in defining composite material level failure.
Fibers are very stiff under axial or transverse loading but are compliant under incremental
shearing because of the low plastic shearing resistance of matrix. Therefore, embedded
delamination will accelerate the development of kink bands and other local failure
conditions.

A similar analysis is carried out for a composite cylindrical shell. The results show that
a delamination reduces the critical buckling load but the structure still preserves its stable
post-buckling behavior. The important difference observed in the cylindrical shell is that
the energy release rate of the interlaminar delamination increases prior to the structural
buckling. This lowers the critical structural failure load of shells and makes delamination
growth a more critical failure mode. It was observed that initial crack closure prior to
ligament buckling caused an apparent stiffening of the shell. Using an approximate ¢4, as a
reference, the critical pressure for delamination growth is found to be about 80% of the
buckling load. In addition, the internal compressive stress is much higher in the cylindrical
shell than in the flat panel. Such a result increases the likelihood of compressive kink band
formation in the laminate.

Based on various calculations, we have introduced a “design diagram™ which identifies
the dominant failure mechanism for the cylindrical shell. Three failure modes, structural
buckling, delamination growth and kink band formation are assumed as possible mech-
anisms. With given geometrical dimensions and material properties, one can use the diagram
to predict the primary failure mode or the initial source of failure. In general, the possibility
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of delamination growth incrcases with shell radius while structural buckling is predicted
for thinner shells. This diagram can be used effectively in designing shells with optimized
shell radius and thickness for given toughness of interlaminar delamination and kink band
formation stress.

Finally, we have simulated the dynamic crack propagation of interlaminar delami-
nations. Lacking any experimental data, we employed a simplified toughness condition and
an iterative method to propagate the crack without prior input of the crack tip velocity
history. The analysis of the two models under dynamic loading conditions shows that a
much higher crack tip velocity is predicted for the cylindrical shell. The faster velocity in the
cylindrical model is probably the result of greater stored energy available for delamination
propagation. The cylindrical shell has greater stored energy than the flat panel when
delamination growth initiates, as represented by the very large internal compressive stress
in the laminae. The comparison of the static and the dynamic results for the cylinder has
shown that the equivalent static pressure overestimates the energy release rate in the
dynamic loading. Combined with expected higher toughness, delamination growth under
dynamic conditions most likely occurs at a much larger pressure level than that of the static
case.
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